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Abstract

Several time integration methods for nonlinear systems are compared. All of the time discretizations are based on the

h-method, but differ in their treatment of the implicit nonlinear terms. One method converges the implicit nonlinear

terms to a small tolerance and is often referred to as nonlinearly consistent (NC). Newton�s method, or its approxi-

mation Newton–Krylov, is used to converge the nonlinearities. The other methods considered are linearized and

comparisons are made for a relaxation problem and a radiation diffusion problem. The linearized one-step method that

uses the full Jacobian is shown to have similar accuracy as NC methods. The lagged linearization method and an

extension that is second-order accurate are also studied. A truncation error analysis complements the numerical results.

For the relaxation problem, it is shown that each of the second-order accurate linearized methods may be more accurate

than an NC method, depending on the degree of nonlinearity in the problem. For the radiation diffusion problem, in

general the NC method is most accurate and allows a larger time step. However, the linearized methods perform

surprisingly well.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The implicit time integration of nonlinear systems has two important aspects

1. The time discretization. Some examples are implicit Runge–Kutta, backward Euler, and Crank–Nicolson.
2. The treatment of the implicit nonlinear terms. One example is to converge the nonlinearities to a small

tolerance. Another possibility is to linearize the implicit terms, such as evaluating the solution-dependent

coefficients at the old time level.
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This study will compare various treatments of the implicit nonlinear terms for two problems that are

related to radiation diffusion, both of which have strong nonlinear transients. The comparisons will be

made for a single second-order time discretization (Crank–Nicolson), which is commonly used when the
nonlinear terms are converged (see, for example [2,5,17]).

Previous research that is closely related to the present work is that of Knoll et al. [9], who study the same

relaxation problem and radiation diffusion problem, along with several other nonlinear problems. How-

ever, the linearized 1 methods they consider are only first-order accurate. Concurrent with the present work

[13,18] also present results for the radiation diffusion problem, using a different spatial discretization, and

compare several methods, including converging the nonlinear terms and ‘‘one step’’ [3, Section 3.2]

methods. Refs. [9,13,18] also consider operator-splitting effects, while this study will concentrate only on the

effects of linearization.
Ref. [9] includes a modified equation analysis and concluded that one reason the Newton–Krylov (NK)

method is accurate is because it is ‘‘nonlinearly consistent’’ (NC), in that the entire residual is evaluated at

the same time level and implicit nonlinear terms are converged to a small tolerance. The NC property has

been put forward as desirable [2,4,5,9,12,15,17], but the question remains under what conditions is the NC

property necessary in order to obtain accurate results for nonlinear, multiple time scale problems. To begin

to answer this question, this study will compare an NC method with several other linearized treatments.

In terms of accuracy for a given time step, this study will reinforce the idea that generally, an NC method

is hard to beat. But further study of linearized methods is still needed for the following reasons:
• Much of the previous work on second-order NC methods has used a first-order linearization (cf. Section

3.3) as a basis of comparison (for example, see [2,9,12,17]).This study will suggest several viable second-

order schemes as a basis for future comparisons.

• Many existing codes are based on linearized methods. What benefits will these codes realize by converg-

ing the nonlinearities? Can some of these benefits be realized by using a better linearized method, which

depending on the implementation, may be an easier code modification?

• For a given accuracy, compare the efficiency of second-order linearized and NC methods.

This study will by no means fully address all of these issues, but is simply a first step and will hopefully
motivate future work.

The next section defines the implicit nonlinear treatments. In a general setting, a truncation error

analysis is then performed for each treatment. The analysis is applied to a simple relaxation problem and it

is shown that each second-order accurate linearized method may be more accurate than NC methods,

depending on the degree of nonlinearity in the problem. Numerical results back up the analysis. A non-

linear radiation diffusion problem is then considered, both for smooth conditions, and the Marshak con-

ditions (see, for example [11]) presented in [7–9].
2. The time discretization

This section will describe the time discretization and notation used in this study. Consider a system of

ordinary differential equations

u0ðtÞ ¼ rðuÞ; ð1Þ

where uðtÞ is the vector of unknowns. Throughout this study, the notation ð�Þ0 indicates differentiation with

respect to the time variable, t.
1 In the present context, ‘‘linearized’’ means that the time integration method is formulated so that it performs a fixed, small number

(one or two) of linear solves per time step.
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The focus in this study is on cases where the function rðuÞ is nonlinear; for example, rðuÞ might result

from the spatial discretization of a nonlinear system of partial differential equations. This study will

concentrate on the h-method time discretization, given by

unþ1 � un

Dt
¼ hrðunþ1Þ þ ð1� hÞrðunÞ; ð2Þ

where 06 h6 1 is a specified parameter. For h ¼ 1=2, one obtains the well-known Crank–Nicolson

(trapezoidal) method, which assuming sufficient regularity in t, is second-order accurate in time for small

Dt.
Although time discretizations other than (2) (e.g., implicit Runge–Kutta or multistage methods; see [1])

may be more appropriate for a particular problem, the main focus of this study will be the treatment of the

implicit nonlinear term rðunþ1Þ. Each treatment is the subject of the next section.
3. Treatments of the implicit nonlinear term

This section describes the various treatments of the nonlinear term rðunþ1Þ in Eq. (2). It must be em-

phasized that all of the methods in this study are equivalent whenever rðuÞ is linear.
3.1. Nonlinearly consistent

One possibility is at each time step, converge rðunþ1Þ to a small tolerance. This approach results in what is

often referred to as a nonlinearly consistent (NC) treatment. There are several approaches to converging the

nonlinearities, including the Newton–Krylov (NK) method. Using NK to solve (2) has been demonstrated

to be accurate and efficient for a wide range of problems [4,5,7,14,15,17].

Although the terminology here may be confusing, it must be stressed that NK is a specific example of an
NC method. With sufficiently small convergence criteria, all NC methods for Eq. (2) have identical ac-

curacy and differ only in their robustness and efficiency in converging the nonlinear terms.
3.2. Beam and Warming

A second-order approximation of rnþ1 � rðunþ1Þ is

rnþ1 ¼ rn þ ðourÞnduþOðdu2Þ; ð3Þ

where our is the Jacobian of rðuÞ and du ¼ unþ1 � un. If the Oðdu2Þ-terms are ignored, then Eq. (2) trans-

forms to the following linear system:

1½ � hDtðourÞn�du ¼ Dtrn: ð4Þ

This method is the two-level version of the Beam and Warming scheme (BW) [3] (see [6, Section 11.3]).
Beam and Warming cite [10], where (4) can also be interpreted as a one-stage Rosenbrock (‘‘semi-implicit’’

Runge–Kutta) method.

The BW method is also equivalent to a single Newton iteration of NK, using a small tolerance on NK�s
inner linear solve. It therefore should be emphasized that the BW method requires forming the matrix our,

or at least accurately estimating its action (cf. Section 6.2). Any approximations to our may significantly

decrease accuracy.
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3.3. Lagged nonlinearities

For many physical systems, the nonlinear operator rðuÞ may be factored as

rðuÞ ¼ NðuÞuþ b; ð5Þ

where NðuÞ is a matrix and b a constant vector. For a linear system, N ¼ our. However, for a nonlinear

system, N is often much easier to form than our.

A common time integration method is then to lag the nonlinearities in rnþ1 as

rnþ1 ¼ Nnunþ1 þ bþOðduÞ: ð6Þ

This study will refer to the approximation above as the Lagged treatment. Note that unlike the linearization

(3), the Lagged treatment is only first-order accurate with respect to du. As a single-stage method, Eq. (2)

with the Lagged treatment is

1½ � hDtNn�du ¼ Dtrn; ð7Þ

which should be compared with Eq. (4). This method has often been used as the basis of comparison for

NC methods [2,9,12,17] and is the only first-order method (for any h) in this study. Refs. [7,8] refer to this

method as the �semi-implicit� method.
3.4. Predictor–corrector

Second-order accuracy may also be obtained by using Eq. (7) as a predictor, and then performing an-

other linear solve in a corrector step. Specifically,

u� � un

Dt
¼ Nnu� þ b; ð8aÞ
unþ1 � un

Dt
¼ hðN �unþ1 þ bÞ þ ð1� hÞrn: ð8bÞ

For h ¼ 1, this method is simply two Picard iterations for backward-Euler time differencing.

Note that this predictor–corrector method differs from those covered in [1,10], in that it uses the Lagged

method for the predictor, as opposed to an explicit method. As a result, the method (8a) and (8b) is A-

stable, but requires two linear solves per time step. However, if an existing code is already using the Lagged

method, then adding the corrector step may be straightforward.
4. Truncation error analysis

In this section the truncation errors are compared for each of the methods of the previous section. The

error analysis will help explain some the numerical results obtained in this study. Many of the results and

techniques used in this section are well known and therefore the presentation is brief.
4.1. Nonlinearly consistent methods

For NC methods, expand unþ1 and rnþ1 in terms of their time-level-n quantities to obtain
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unþ1 � u

Dt
¼ u0 þ 1

2
Dtu00 þ 1

6
Dt2u000 þOðDt3Þ; ð9Þ
rnþ1 ¼ rþ DtðourÞ u0
�

þ 1

2
Dtu00

�
þ 1

2
Dt2ðo2urÞðu0Þ

2 þOðDt3Þ; ð10Þ

where without a superscript, the term is assumed to be evaluated at time level n. Through OðDt2Þ, the above
expressions assume that u000 and the tensor o2ur exist.

Insert the above expressions into (2) to yield

u0 ¼ r� 1

2
Dtu00 � 1

6
Dt2u000 þ hDtðourÞu0 þ

1

2
hDt2 ðourÞu00

h
þ ðo2urÞðu0Þ

2
i
þOðDt3Þ: ð11Þ

To simplify this expression, differentiate it twice to obtain

u00 ¼ ðourÞu0 �
1

2
Dtu000 þ hDt ðo2urÞðu0Þ

2
h

þ ðourÞu00
i
þOðDt2Þ; ð12Þ

and

u000 ¼ ðourÞu00 þ ðo2urÞðu0Þ
2 þOðDtÞ: ð13Þ

These last two expressions may be used to eliminate ðo2urÞðu0Þ
2
and ðourÞu0 in Eq. (11), so that

u0 � r ¼ Dt h

�
� 1

2

�
u00 � 1

6
Dt2 6h2
�

� 6hþ 1
�
u000 þOðDt3Þ: ð14Þ

This shows the well-known result that (2) is second-order accurate when h ¼ 1=2 and first-order otherwise.

4.2. Beam and Warming method

Using the same assumptions of solution regularity as for NC methods, the modified equation for the BW
method is

u0 � r ¼ Dt h

�
� 1

2

�
u00 � 1

6
Dt2 ð6h2
�

� 6hþ 1Þu000 þ 3h u000
�

� ðourÞu00
��

þOðDt3Þ: ð15Þ

This method is also second-order when h ¼ 1=2. Whether the OðDt2Þ error term is better behaved in (14) or
in (15) is problem dependent; it must be stressed that both derivations used the same assumptions of

smoothness. In this study, it will be shown that for some cases, the BW method has lower error, while for

others, NC methods have lower error.
4.3. Lagged method

For the Lagged method, the modified equation is

u0 � r ¼ Dt hNu0
�

� 1

2
u00
�
þOðDt2Þ: ð16Þ

If one assumes that the tensor ouN exists, then an alternative form for (16) is
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u0 � r ¼ Dt h

�
� 1

2

�
u00 � DthðouNÞu0uþOðDt2Þ; ð17Þ

which may then be directly compared with (14) or (15). Eq. (17) was also derived for a relaxation problem

in [9].

On the other hand, the presence of the ouN term does not mean that the Lagged method is less accurate

than NC(h ¼ 1) for all problems. It could be that the ouN term in (17) compensates for the other error term.
As a simple example, consider a scalar relaxation problem with rðuÞ ¼ �cu2, where c is a constant. A

Lagged linearization is NðuÞ ¼ �cu and b ¼ 0. For h ¼ 1, it is easy to show that the first-order error drops

in (16), so that the method is second-order accurate. For this special case, the Lagged linearization results in

a harmonic average over the time step.

4.4. Predictor–corrector method

To derive the truncation error for the PC method requires an explicit expression for u�. Eq. (8a) may be
rearranged to read

u� ¼ un þ DtðNnu� þ bÞ: ð18Þ

Apply this expression recursively to obtain

u� ¼ un þ Dtrn þ Dt2Nnrn þOðDt3Þ: ð19Þ

Eq. (8b) then yields

u0 � r ¼ Dt h

�
� 1

2

�
u00 � 1

6
Dt2 6h2

��
� 6hþ 1

�
u000 þ 6hðN � ourÞðN � hourÞr

�
þOðDt3Þ: ð20Þ

Like the BW and NC methods, the PC method is second-order accurate when h ¼ 1=2. Through OðDt2Þ, the
derivation of (20) requires that u000 and the tensor o2uN exist, which are similar regularity assumptions as for

the BW and NC methods. Comparing (20) and (14), the last term involving N is the only difference with the

error for NC methods. In the next section it will be shown that this additional term may increase or

decrease the error, depending on the problem.
5. Relaxation problem

The results so far can now be applied to a simple problem. Consider the following scalar ordinary

differential equation:

dT
dt

¼ aðT ÞT ; ð21Þ

where

aðT Þ ¼ �T p for pP 0;
�1=ðT�p þ aÞ for p < 0;

	
ð22Þ

along with the initial condition T ðt ¼ 0Þ ¼ 1. The parameter p is the degree of nonlinearity and the pa-

rameter a keeps the solution well behaved as T ! 0. This problem was studied in [9], with p ¼ �3 and

a ¼ 0:02, as a test for nonlinear time integrators.
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Note that the exact solution satisfies 06 T ðtÞ6 1. The solution evolves on a time scale given by �1=a.
This time scale is often referred to as the dynamical time scale, sdyn. The minimum value of sdyn depends on
p as

smin
dyn ¼ 1 for pP 0;

a for p < 0:

	
ð23Þ
5.1. Error analysis

This section will emphasize that depending on the value of p in Eq. (22), both the BW and PC methods
may be more accurate than NC methods. In other words, in terms of the truncation error analysis, none of

these methods is the most accurate for all problems. For brevity, the analysis is restricted h ¼ 1=2, so that

each method is second-order accurate. The Lagged method, which in general is only first order, is not

analyzed in this section.

To simplify the analysis, assume that a is very small, so that (22) may be approximated as

aðT Þ ¼ �T p: ð24Þ

From Eqs. (14) and (15), with h ¼ 1=2, the ratio of the leading-order truncation error of BW to that of an

NC method is given by

ðTEÞBW
ðTEÞNC

¼ 3ðourÞu00 � 2u000

u000
: ð25Þ

With Eqs. (21) and (24), the expression above reduces to

ðTEÞBW
ðTEÞNC

¼ 1� p
1þ 2p

: ð26Þ

If conditions are such that the expressions for truncation error hold and the leading-order terms dominate,

then BW is more accurate than an NC method if

ðTEÞBW
ðTEÞNC










 < 1: ð27Þ

This expression is satisfied if

p < �2; or

p > 0:

	
ð28Þ

Therefore, the additional iterations that a Newton method performs actually decreases the accuracy

whenever (28) is satisfied. Note also that BW is third-order accurate for the special case of p ¼ 1 and an NC
method is third-order when p ¼ �1=2. Also, for the trivial case of p ¼ �1, the BW and NC methods are

exact. The PC method is not exact for p ¼ �1, because it relies on the factorization (6), which is not needed

in this trivial case.

Similarly, the PC method gives

ðTEÞPC
ðTEÞNC

¼ 1þ 6p � p2

ð1þ pÞð1þ 2pÞ : ð29Þ
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Therefore,

ðTEÞPC
ðTEÞNC










 < 1 if

p < pL; or

pR < p < 0; or

p > 1;

8><
>: ð30Þ

where pL ¼ �ð9þ
ffiffiffiffiffi
73

p
Þ=2 � �8:772 and pR ¼ ð�9þ

ffiffiffiffiffi
73

p
Þ=2 � �0:228. The PC method is third-order

accurate whenever p ¼ 3�
ffiffiffiffiffi
10

p
.

The main point of this section is that none of the methods in this study are optimal for all nonlinear
problems. For the very idealized problem studied here, both the BW and PC methods have a wide range of

p that give more accurate results than NC methods.

Note that for other equations, and in particular systems, the truncation error ratio will be a function of

the solution state; see Eq. (25). The analysis may then be much more involved. The manner in which the

results of this section extend to more complicated problems is left for future work.

5.2. Maximum time step

This section shows that the maximum allowable time steps for each method are comparable in mag-

nitude and that they exceed the dynamical timescale of the problem. The maximum time step, Dtmax, is

chosen so that for all Dt6Dtmax

T n P T nþ1 P 0; ð31Þ

a condition satisfied by the exact solution. The first inequality implies absolute stability, while the second

ensures positivity. For all of the methods in this study, the maximum time step is determined by the

positivity condition. To simplify the presentation, assume that Dt is constant over the simulation.

For an NC method, the maximum allowable time step is determined by the maximum value of jaðT Þj.
Using the fact that 06 T n

6 1, it is then straightforward to show that there is a T nþ1 for an NC method that

satisfies (31) for Dt6Dtmax
NC , where

Dtmax
NC ¼

1
1�h if pP 0;
a

1�h if p < 0:

	
ð32Þ

The requirement a > 0 is apparent. It should be stressed that even with Dt6Dtmax
NC , there may be other real-

valued solutions to the NC difference equation. The assumption here is that the initial guess for the iterative

method is close enough to the desired solution that spurious roots are avoided.

It can be shown that for this problem, Dtmax
PC ¼ Dtmax

Picard ¼ Dtmax
NC . However, the BW method has a different

maximum time step. To simplify the analysis, the assumption that 06 a6 1 is made. Then,

Dtmax
BW ¼

1 if pP h�1 � 1;
1

1�ðpþ1Þh if h�1 � 1 > pP 0;

a
1�h if 1� h�1

6 p < 0;
�4aph

½hð1þpÞ�1�2 if p < 1� h�1:

8>>>><
>>>>:

ð33Þ

Therefore, the maximum time step for BW is less restrictive than the other methods for h�1 � 1P pP 0, but

more restrictive for p < 1� h�1.

As an example, let h ¼ 1=2. Then for p ¼ 3, BW unconditionally satisfies (31), while Dtmax
NC ¼ 2. In this

case smin
dyn ¼ 1 (see Eq. (23)), so for accuracy reasons, one probably should not exceed Dt ¼ 1 by much

anyway. For p ¼ �3, one finds Dtmax
BW ¼ 3a=2, while Dtmax

NC ¼ 2a. In this case, smin
dyn ¼ a.
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In summary, all of the methods permit Dt > smin
dyn. An L-stable integration method (as opposed to Crank–

Nicolson) might allow an even larger maximum time step, but one might expect time accuracy to suffer

whenever Dt � smin
dyn.

5.3. Numerical results

First consider p ¼ �3 and a ¼ 0:02, which was studied in [9]. A smaller value of a will also be considered

in this section, so that the analysis in Section 5.1 applies. As in [9], the error is computed as

Error ¼ jTnumerical � Texactj
Texact






t¼t�

; ð34Þ

where t� ¼ 0:36.
Fig. 1 compares the results for all of the methods with h ¼ 1=2. In this case, the BW method is the most

accurate over the time step range. Note that for a ¼ 0 in (22), the analysis of Section 5.1 gives that

BW(h ¼ 1=2) is more accurate than NC(h ¼ 1=2). The PC(h ¼ 1=2) method attains second-order accuracy,

although typically it must take a time step of one-fourth that of NC or BW to attain the same level of

accuracy. Again, this result is roughly consistent with the analysis. Note that in this case Dtmax
BW ¼ 0:03, while

for the other methods, Dtmax ¼ 0:04. Therefore, for Dt ¼ 0:04 the BW method exhibits slight negativities in

the region where T approaches zero.

There is very little difference between Lagged(h ¼ 1) and Lagged(h ¼ 1=2). That Lagged(h ¼ 1=2) per-
forms so poorly is a good indicator of the nonlinearity of this problem, because all of the methods here are
identical for a linear problem.

Fig. 2 plots the observed error ratios for a ¼ 0:02 and a ¼ 0:001, along with the truncation error esti-

mates from Eqs. (26) and (29) with p ¼ �3. For a ¼ 0:001, the error was computed at t� ¼ 0:32 (at t ¼ 0:36,
the exact solution has relaxed to T ¼ 0). The maximum time step also decreases to Dtmax

BW ¼ 0:0015 and

Dtmax ¼ 0:002 for the other methods, so that negative solutions are observed for the larger time steps and

times past t� ¼ 0:32. The a ¼ 0:02 results for the PC method are not shown on the plot, as they range in
Fig. 1. Errors for relaxation problem, with Eq. (22), a ¼ 0:02. Unless noted, all methods used h ¼ 1=2.



Fig. 2. Ratio of BW and PC errors to NC error for relaxation problem, with Eq. (22), p ¼ �3, h ¼ 1=2. The truncation error (TE)

estimates were computed from Eqs. (26) and (29), with the upper line for PC and the lower line for BW.

Fig. 3. Ratio of BW and PC errors to NC error for relaxation problem, with Eq. (24), p ¼ 3, h ¼ 1=2. The truncation error (TE)

estimates were computed from Eqs. (26) and (29), with the upper line for PC and the lower line for BW.
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value from approximately 5 for the large time step, to 16 for the small time step. As expected, the agreement

with theory improves with decreasing a.
Finally, Fig. 3 plots the error ratios for the relaxation problem using Eq. (24) and p ¼ 3. The error was

computed at t� ¼ 4. Again, there is good agreement with the theory.
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6. Radiation diffusion problem

A radiation diffusion model is given by the system

otT ¼ rðE � T 4Þ; ð35aÞ
otE ¼ oxðDoxEÞ � rðE � T 4Þ; ð35bÞ

where T ðx; tÞ is the temperature and Eðx; tÞ the radiation energy. The spatial domain is 06 x6 1 and

r ¼ T�3; D ¼ ð3rþ joxEj=EÞ�1
: ð36Þ

The boundary conditions may be written as

1

4
Eð0; tÞ � 1

6r
ðoxEÞð0; tÞ ¼ 1; ð37aÞ
1

4
Eð1; tÞ þ 1

6r
ðoxEÞð1; tÞ ¼ VR; ð37bÞ

where VR is a constant. If Eðx; tÞ � 0, then Eq. (35a) is a special case of the relaxation problem covered in

Section 5. For Marshak-wave conditions, the NC(h ¼ 1; 1=2) and Lagged(h ¼ 1) methods were compared
in [7,8] and these results are covered in Section 6.6. Results will also be presented in this study for con-

ditions with smoother results, so that spatial truncation-error analysis applies.
6.1. Spatial discretization

The spatial discretization used is a cell-centered finite-volume method, which is described in [7]. Briefly,

in semi-discrete form, Eqs. (35a), (35b) are written as

otTj ¼ rðTjÞðEj � T 4
j Þ; ð38aÞ
otEj ¼
ðDoxEÞjþ1=2 � ðDoxEÞj�1=2

Dx
� rðTjÞðEj � T 4

j Þ; ð38bÞ

where

Djþ1=2 ¼ 3rðTjþ1=2Þ
h

þ joxEjjþ1=2=Ejþ1=2

i�1

; ð39aÞ
ðoxEÞjþ1=2 ¼
Ejþ1 � Ej

Dx
; ð39bÞ
Tjþ1=2 ¼ ðTjþ1 þ TjÞ=2; ð39cÞ
Ejþ1=2 ¼ ðEjþ1 þ EjÞ=2: ð39dÞ

Here j is the cell index, with 16 j6N . For smooth solutions, this discretization is second-order accurate in

space.
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The discretization of the boundary conditions will be given here for the x ¼ 0 boundary; a similar ap-

proach is used at x ¼ 1. In the first cell (j ¼ 1), the value of ðDoxEÞ1=2 is needed. Eq. (37a) is discretized as

1

4
E1=2 �

1

6rðT1Þ
E1 � E1=2

Dx=2
¼ 1; ð40Þ

where the subscript ‘‘1/2’’ indicates the value at the boundary and the subscript ‘‘1’’ indicates the value in

the first cell. This equation gives E1=2 in terms of known quantities. Then set

ðoxEÞ1=2 ¼
E1 � E1=2

Dx=2
; ð41aÞ
T1=2 ¼ T1; ð41bÞ

and use Eq. (39a) to compute D1=2.

The boundary procedure above is locally only first-order accurate. A second-order method was also

implemented, but for the problems in this study, the results did not improve and robustness was slightly

degraded.
6.2. Solver details

Each of the time integration methods, given by Eqs. (2), (4) and (7), and each step of (8a) and (8b), may

be expressed as a vector function of the unknown unþ1

Fiðunþ1Þ ¼ 0; ð42Þ

where the subscript �i� denotes the particular method and the dependence on un and Dt has been suppressed.

Note that FNC is a nonlinear function, while for the other methods, Fi is linear. In this study, each method

used an iterative method to converge their discrete equation to the same tolerance, as

kFiðunþ1Þk2
kFiðunÞk2

6 10�7: ð43Þ

For example, the NC method converged its nonlinearities using Newton–Krylov (NK), such that the

nonlinear residual satisfies (43).

All of the methods used right-preconditioned GMRES for their linear solver. The preconditioner used

was effectively the Lagged(h ¼ 1) method, similar to [7], but implemented as a tridiagonal solve. This

preconditioner adds a negligible cost to each GMRES iteration.

Each NK linear solve decreased its residual by a factor of c ¼ 10�p, where pP 1 (see [7] for more details

on c). For the problems in this study, numerical experiments for various integer-p found that p ¼ 2 min-
imized the CPU time.

Each method evaluates the product of its Jacobian matrix with a vector. The NC and BW methods

evaluate ðourÞdu, which is approximated using the matrix-free technique [7]:

ðourÞdu � rðuþ eduÞ � rðuÞ
e

: ð44Þ

The Lagged and PC methods evaluate Ndu, which for ease of coding, is computed in a similar way

Nu � ~rðuþ eduÞ � ~rðuÞ
e

: ð45Þ
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where ~r ¼ Nuþ b. In Eqs. (44) and (45),

e ¼ e0kuk2=kduk2: ð46Þ

The NC and BW methods set e0 ¼ 10�8 (approximately the square root of machine precision). Because ~rðuÞ
is linear, with exact arithmetic, the results of Eq. (45) are independent of e0. Using values in the range

10�8
6 e0 6 1000, it was found that to within round-off, the PC and Lagged results do not change. The PC

and Lagged results presented in this study used e0 ¼ 1.

Note that for efficiency, one should consider implementing the PC and Lagged methods by explicitly

forming the N matrix (as the preconditioner does). For many problems, N is much easier to form than the

full Jacobian matrix. During a GMRES solve, knowing N and performing the matrix–vector multiply

explicitly is often much more efficient than using Eq. (45). For more complicated problems, it also allows
the use of many more off-the-shelf preconditioners. However, to keep the code simple and to have com-

parable linear solver costs, Eq. (45) was used.
6.3. Time step selection

Two different time step choices are used in this study. One approach ramps up the time step to a specified

final value, as prescribed in [7]. Let Dtfinal be the final time step. Then for time step number n, with nP 1, the

time step is computed as

Dtn ¼ f nDtfinal; ð47aÞ

where the first eight values of f n are given by

f0:1; 0:1; 0:2; 0:2; 0:3; 0:3; 0:4; 0:4g: ð47bÞ

For n > 8, set Dtn ¼ Dtfinal.
The second approach used in this study follows that in [8,16]. The idea is to estimate the dynamical

timescale, assuming that the solution is dominated by a wave-like behavior. The wave speed is estimated

as

vn ¼ Dx
Dtn

2
P

j Enþ1
j � En

j




 


P
j Enþ1

jþ1 � Enþ1
j�1




 


 : ð48Þ

Then the next time step is computed as

Dtnþ1 ¼ CFLDx=vn; ð49Þ

where CFL is specified and can be thought of as a Courant number. As in [8], the initial time step is set as

Dt1 ¼ 10�9. When CFL ¼ 1, the dominant radiation front will move at approximately one cell per time

step, while for CFL � 1, one would expect that the radiation front would be poorly resolved.
6.4. Accuracy measures

Two different solution norms are considered in this study. In order to measure the performance of a time
integration scheme, a common practice is to fix the spatial mesh and measure the rate of convergence to the

Dt ¼ 0 solution [2,7–9,17]. Specifically, on an equally spaced mesh, the norm
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LDt¼0
2 ðTrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

½Tr;j � T Dt¼0
r;j �2

vuut ð50Þ

will be used, where N is the number of mesh cells and Tr is the radiation temperature, defined as

Tr ¼ E1=4: ð51Þ

The value Tr;i is the numerical solution at cell-index j, while T Dt¼0
r;j is the value on the same spatial mesh but

with (ideally) Dt ¼ 0. An analytic expression for T Dt¼0
r;j is typically unknown, so a calculation with a suffi-

ciently small Dt is used instead.

This study will also consider the error norm

L2ðTrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

½Tr;j � T base
r;j �2

vuut ; ð52Þ

where ideally T base
r;j is the exact solution, projected onto the mesh. Again, typically the exact solution is

unknown, so a suitably fine-mesh calculation is used. The number of fine mesh cells is chosen as

Nfine ¼ 2mN , where m is an integer with mP 1. In this way, each coarse-mesh cell is made up of a union of

fine-mesh cells. The fine-mesh values are projected to the coarse mesh by averaging

T base
r;j ¼ 1

2m

X2m
k¼1

T fine
r;2mðj�1Þþk

 !
; ð53Þ

where T fine
r;j is the solution in cell-j on a mesh with Nfine cells. For a finite-volume method, this projection is

exact for the cell-averaged conserved quantities. Because Tr is not a conserved quantity, the projection is

only second-order accurate in space, which is within the accuracy of the spatial discretization used in this

study.
6.5. Results for smooth conditions

This section presents results for the initial condition

Eðx; 0Þ ¼ EL þ ðER � ELÞ
1þ tanh½50ðx� 0:25Þ�

2
; ð54Þ
T ðx; 0Þ ¼ Eðx; 0Þ1=4; ð55Þ

with EL ¼ 4 and ER ¼ 0:004. In Eq. (37b), VR ¼ 0:001. The reason for studying this case is that the solution

is smoother than the standard Marshak case presented in Section 6.6 and therefore is more appropriate for
verifying an error convergence rate derived from a Taylor-series analysis.

Fig. 4 plots a sample solution for this case. Fig. 5 compares results of the various time integration

methods at the radiation front. The BW and NC results appear coincident with the base solution, while the

front position of the PC method lags slightly. The Lagged method gives only a slight improvement in going

from h ¼ 1 to h ¼ 1=2, which again, is a good indicator of the degree of nonlinearity in the problem. Note

for a linear problem, all of the h ¼ 1=2 methods are equivalent and give the same results.



Fig. 5. Sample results for problem of Fig. 4, t ¼ 1, 200 mesh cells, CFL ¼ 0:4, and h ¼ 1=2 (unless noted). The BW and NC results are

nearly coincident.

Fig. 4. Smooth radiation diffusion base solution, t ¼ 1.
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6.5.1. Convergence for a fixed mesh size

The LDt¼0
2 -norm convergence results are shown in Fig. 6. For this problem, CFL ¼ 1 corresponds to an

average Dt of 0:012. For a given mesh and problem, it was found that each method has a CFLmax, so that

for CFL > CFLmax, the method fails in some manner. This problem gave a CFLmax
NC ¼ 6:1, beyond which

the GMRES failed to converge. However, no backtracking was implemented in the Newton–Krylov

implementation. Presumably, backtracking would permit a larger CFLmax. On the other hand, the results

here show that the NC solution error is quite large for CFL ¼ 6:1 (although still much smaller than the



Fig. 6. Problem of Fig. 4, convergence of solution in LDt¼0
2 , t ¼ 1, 200 cells, and h ¼ 1=2 (unless noted). Norms were computed relative

to NC(CFL ¼ 5	 10�5); norms relative to NC(CFL ¼ 10�4) appear identical on this scale.
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other methods), so the ability to run at an even larger CFL is undesirable if time accuracy is to be

maintained.

For BW, CFLmax
BW ¼ 1:4, beyond which at some time, nonphysical, negative solutions were found and the

simulation halted. Both the PC and Lagged methods have a CFLmax > CFLmax
NC which was not explored.

Aside from the Lagged method, the methods have second-order convergence in LDt¼0
2 . Clearly, the NC

method maintains second-order convergence for larger CFL than the other methods, up to approximately

CFL ¼ 1. The BW method begins to deviate from second-order convergence at CFL ¼ 0:6, while the PC

method deviates at approximately CFL ¼ 0:2. In general, the NC method has the smallest error values,
while the PC method has values that are nearly an order-of-magnitude higher than the values of the BW

and NC methods.

6.5.2. Convergence for a fixed CFL

To study the effects of the spatial mesh size, the mesh was refined at a fixed CFL ¼ 0:4. The errors are

plotted in Fig. 7. The BW method is consistently the most accurate. However, given the results in Fig. 6, the

lower error of BW here is most likely a fortuitous cancellation of spatial and temporal error components.

Both the BW and NC methods attain second-order accuracy at about a mesh size of 300 cells mesh size,
while the PC method does not appear to be second-order until nearly 1000 cells. This behavior roughly

follows from Fig. 6, where the PC method is not yet second-order at CFL ¼ 0:4.
Note that increasing the temporal order-of-accuracy greatly improved the L2 error; the error is not

dominated by spatial errors. For example, Fig. 7 shows that L2ðTrÞ for BW(h ¼ 1=2, 200 cells) is over an

order-of-magnitude lower than Lagged(h ¼ 1=2, 200 cells).

6.6. Results for Marshak conditions

This section presents results for the conditions used in [7–9]; specifically,

Eðx; 0Þ ¼ 1	 10�5; T ðx; 0Þ ¼ Eðx; 0Þ1=4; ð56Þ



Fig. 7. Problem of Fig. 4, space–time convergence of solution, t ¼ 1, h ¼ 1=2 (unless noted), CFL ¼ 0:4. Error computed using the

NC(6400 cells) solution as the base solution. Using NC(3200 cells) as the base gave a slight difference for BW and NC, shown by their

adjacent dashed lines.
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and VR ¼ 0. The base solution used for comparison is shown in Fig. 8. Note the sharp front, which for
coarse meshes, will slow the spatial convergence rate for all of the methods.

Sample solutions are shown in Fig. 9. Just as with all of the cases in this paper, the Lagged(h ¼ 1=2)
results are only a small improvement over Lagged(h ¼ 1), showing that treating the nonlinearities accu-

rately over the time step is necessary for this problem.
Fig. 8. Marshak radiation diffusion base solution, t ¼ 3.



Fig. 9. Sample results for problem of Fig. 8, t ¼ 3, 200 mesh cells, CFL ¼ 0:4, and h ¼ 1=2 (unless noted).
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6.6.1. Convergence for a fixed mesh size

To compare with the results of [8], results were generated using the time step ramping given by Eq. (47a),

(47b). Convergence in the LDt¼0
2 -norm, at time t ¼ 1, for the various methods is shown in Fig. 10. Non-

physical, negative solution values were produced by the BW method when Dtfinal > 0:0094 and by the PC

method when Dtfinal > 0:16. As in [8], the other methods were run up to Dtfinal ¼ 0:2. Larger Dtfinal could
have been run for the NC and Lagged methods, but this was not the focus here.
Fig. 10. Problem of Fig. 8, at t ¼ 1, convergence of solution using ramping of Eq. (47a), (47b), 200 cells, and h ¼ 1=2 (unless noted).

Norms were computed relative to NC(Dt ¼ 10�4); norms computed with a base of NC(Dt ¼ 10�5) give a slight difference for the BW

and NC methods, shown by their adjacent dashed lines.



Fig. 11. Problem of Fig. 8, convergence of solution using CFL time step control, t ¼ 3, 200 cells and h ¼ 1=2 (unless noted). Norms

were computed relative to NC(CFL ¼ 5	 10�5); norms relative to NC(CFL ¼ 10�4) appear identical on this scale.
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Note that the ‘‘L2 Error’’ in [8] is computed as
ffiffiffiffi
N

p
LDt¼0
2 (where N ¼ 200); otherwise, the NC values here

and the ‘‘NK2’’ values plotted in [8] compare well. However, unlike [8], the results here clearly show first-

order accuracy for the Lagged (‘‘Semi-Implicit’’) method, over the entire range of Dt.
Ref. [8] plotted results only for Dtfinal P 0:002. For smaller time steps, all of the second-order methods

show erratic behavior in LDt¼0
2 . By using the CFL time step control, the LDt¼0

2 convergence is better behaved

for most of the methods, as shown in Fig. 11. For this problem, CFL ¼ 1 corresponds to an average Dt of
0.021. Results for the NC, BW, and PC methods are plotted up to their respective values of CFLmax, beyond

which each of these methods generated negative solution values. The maximum CFL values for this
problem are CFLmax

NC ¼ 1:25, CFLmax
BW ¼ 0:45, and CFLmax

PC ¼ 0:84. The value of CFLmax for the Lagged

method was not computed and results are given only up to CFL ¼ 1:25.
A major limitation to the CFLmax values, particularly for the NC method, is the use of the Crank–

Nicolson time discretization. An L-stable method would probably allow the NC method a much larger time

step. On the other hand, Fig. 11 shows that above CFL � 1, the convergence rate for NC is beginning to

deviate from second-order accuracy. From CFL ¼ 1 to CFL ¼ 1:2, the NC convergence rate was measured

to be 0.74. If we assume that the higher-order error terms of an L-stable method behave similar to those of

Crank–Nicolson, then in terms of accuracy, the benefits of a larger CFLmax may not be significant.
For CFL < 0:2, the LDt¼0

2 -norms for BW and NC are very similar, while the PC method has values that

are over an order-of-magnitude larger. Also, the NC method is able to maintain a second-order conver-

gence rate for larger CFL values. The erratic behavior of the BW method is a concern and should be a focus

of future study.

Fig. 12 demonstrates that the LDt¼0
2 -convergence behavior and each method�s CFLmax are only weakly

dependent on mesh size. At least for this problem, the CFL time control is a reasonable, mesh-size inde-

pendent method of selecting the time step. Also interesting is that the erratic behavior of BW(200 cells) is

reduced significantly for both the 100 and 400 cell cases.

6.6.2. Convergence for a fixed CFL

Fig. 13 shows the mesh convergence results for a fixed CFL ¼ 0:4. The convergence rate attains second-
order accuracy only for the PC method, and somewhere between first and second order for the NC and BW



Fig. 13. Problem of Fig. 8, space–time convergence of solution, t ¼ 3, h ¼ 1=2 (unless noted), CFL ¼ 0:4. Error computed using the

NC(25,600 cells) solution as the base solution. Using NC(12,800 cells) as the base gave differences for BW and NC, shown by their

adjacent dashed lines.

Fig. 12. The h ¼ 1=2 results of Fig. 11, with results added for 100 cells (dotted line) and 400 cells (dash line).
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methods. Note that at these mesh sizes plotted, the foot of the radiation front remains unresolved, as shown

in Fig. 14. Presumably, because of the lower temporal errors of the NC and BW methods, they are more

sensitive to the spatial mesh than the other methods.

Even when there are unresolved spatial scales, the benefits of an accurate time integration method are

apparent. Over a wide range of mesh sizes, the BW and NC methods are nearly an order-of-magnitude

more accurate than the PC method, while the PC method is at least a factor of four more accurate than the

Lagged method.



Fig. 14. Problem of Fig. 8, t ¼ 3, results at foot of radiation front, NC(CFL ¼ 0:4). Symbols indicate a cell-centered value.
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6.6.3. Measure of nonlinear residual

The average and maximum values of the nonlinear residual are plotted in Fig. 15. The nonlinear residual

is defined by Eq. (43), using the NC difference equation for the operator FðuÞ.
The nonlinear residual values are quite large for CFL > 0:1. In fact, for CFL > 0:1, the BW nonlinear

residual values are above the PC values, where the BW LDt¼0
2 values are much lower than the PC values. The

nonlinear residual is not necessarily a good measure of the LDt¼0
2 -norm. For the second-order methods, the

nonlinear residual here also converges as Dt2, but this is simply a statement that all second-order methods

are within OðDt2Þ of each other.
Fig. 15. Same cases as in Fig. 11, but plotting the nonlinear residual for the linearized methods. For each method, the upper and lower

lines are, respectively, the maximum and average values over the simulation.



R.B. Lowrie / Journal of Computational Physics 196 (2004) 566–590 587
At a particular CFL, the BW method is equivalent to this particular NC method (Newton–Krylov), if

the NC method uses BW�s maximum nonlinear residual value from Fig. 15 and the same linear tolerance as

BW. Some examples of the difference between the NC and BW methods, as NC�s nonlinear tolerance in
increased, are shown in Fig. 16. Interestingly, the difference is not smoothly varying; instead, it approaches

zero very rapidly near the value of BW�s maximum nonlinear residual.
Fig. 16. Problem of Fig. 8, difference between NC and BW methods, t ¼ 3, 200 cells, h ¼ 1=2. For each CFL, the difference is zero at

the BW�s maximum nonlinear residual shown in Fig. 15.

Fig. 17. Problem of Fig. 8, average CPU time per mesh cell per time step, no preconditioner, t ¼ 3, h ¼ 1=2, 100 cells (dotted line), 200

cells (solid line), 400 cells (dashed line). Times normalized by value for preconditioned NC(CFL ¼ 0:001, 200 cells).
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6.6.4. Method efficiency

For the Marshak conditions, a brief efficiency study is given here. It must be emphasized that these

efficiency trends may not extend to other problems, and in particular, to multiple space dimensions. All
calculations were performed on a HP/Compaq ES45 (1 GHz, 8 MB Cache).

Figs. 17 and 18 show the effectiveness of the preconditioner, in terms of CPU time. With the precon-

ditioner, at a given CFL, the results are fairly independent of mesh size. Fig. 18 also shows that the cost per

time step of the NC method (implemented as Newton–Krylov) increases quickly for CFL > 0:02. This is
Fig. 18. Same as Fig. 17, with preconditioner.

Fig. 19. Problem of Fig. 8, CPU time versus LDt¼0
2 ðTrÞ, for each method with preconditioner, t ¼ 3, 400 cells, h ¼ 1=2.
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because of the increase in linear solves per time step as the time step increases. At CFL ¼ 0:02, NK av-

eraged 3.66 linear solves per time step, while at CFL ¼ 1:25, it averaged 8.00 solves. It follows that the

ability of the NC method to use larger time steps may not always translate into a decreased overall sim-
ulation time. At their respective CFLmax and 400 cells, NK(CFLmax ¼ 1:18) took 16.55 s versus 12.22 s for

BW(CFLmax ¼ 0:49).
Fig. 19 shows the CPU time for a specified LDt¼0

2 ðTrÞ. The BW method has a slight edge over the NC

method, while both methods are more efficient than the PC method, particularly for very small LDt¼0
2 ðTrÞ.

The second-order methods are clear winners over the first-order (for nonlinear problems) Lagged method.

Again, it must be stressed that these run times are for a single problem, in 1-D, using an effective pre-

conditioner. The PC and Lagged methods can be implemented in a much more efficient manner; see Section

6.2 for more discussion. The CPU trends for the smooth problem in Section 6.5 are similar as presented
here, but more work is needed on other problems and systems in order to proclaim a clear winner.
7. Conclusions

The following observations may be made:

1. For the problems in this study, the linearized methods perform surprisingly well when compared with the

nonlinear consistent (NC) method. Both the analysis and numerical results emphasized this point.
Although each second-order method has advantages, there was no clear winner, and in particular, no

order-of-magnitude differences.

2. Of the second-order methods, the NC method allowed larger time steps and maintained second-order

convergence over a broader range of time steps. However, the cost analysis for the radiation diffusion

problem showed that NC�s cost per time step increases rapidly as the time step is increased past values

where the linearized methods operate.

3. All of the methods deviate from their truncation error estimates if the time step becomes too large. In the

absence of a good estimate for the dynamical timescale, this may present difficulties for more compli-
cated problems. A time integration scheme with error control should be considered for future work.

4. Except near its maximum time step, the BW method has similar error levels as NC methods. For the

relaxation problem, the PC method can be more accurate than either BW or NC methods, but for

the radiation diffusion problem, PC has significantly more relative error.

5. The accuracy of the linearized methods is not a result of decreasing the nonlinear residual to a small va-

lue in a single step. Consequently, there remains hope that there is a linearized method that does not

require forming an accurate Jacobian, but is more accurate than the PC method. Another possibility

is to run an NC method with a large nonlinear tolerance; however, for systems in conservation form,
care must be taken if conservation is to be maintained. To ensure the same level of conservation as

the linearized methods, NC methods must decrease their linear tolerance to compensate for an increase

in the nonlinear tolerance.

It must be stressed that many of these points need to be explored further, particularly on other systems

of equations and other problems. Fortunately, with an existing Newton implementation, one should easily

be able to check the benefits (or not) of converging the nonlinearities by trying the BW method. Again, the

BW method is the Newton method, restricted to a single Newton iteration.
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